Essential transmembrane GTPase, which mediates mitochondrial fusion. Fusion of mitochondria occurs in many cell types and constitutes an important step in mitochondria morphology, which is balanced between fusion and fission. MFN2 acts independently of the cytoskeleton. It therefore plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes. Overexpression induces the formation of mitochondrial networks. Plays an important role in the regulation of vascular smooth muscle cell proliferation. Involved in the clearance of damaged mitochondria via selective autophagy(mitophagy). Is required for PARK2 recruitment to dysfunctional mitochondria. Involved in the control of unfolded protein response(UPR) upon ER stress including activation of apoptosis and autophagy during ER stress. Acts as an upstream regulator of EIF2AK3 and suppresses EIF2AK3 activation under basal conditions.
Categories
Primary Antibodies
Clonality
polyclonal
Description
Essential transmembrane GTPase, which mediates mitochondrial fusion. Fusion of mitochondria occurs in many cell types and constitutes an important step in mitochondria morphology, which is balanced between fusion and fission. MFN2 acts independently of the cytoskeleton. It therefore plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes. Overexpression induces the formation of mitochondrial networks. Plays an important role in the regulation of vascular smooth muscle cell proliferation. Involved in the clearance of damaged mitochondria via selective autophagy (mitophagy). Is required for PARK2 recruitment to dysfunctional mitochondria. Involved in the control of unfolded protein response (UPR) upon ER stress including activation of apoptosis and autophagy during ER stress. Acts as an upstream regulator of EIF2AK3 and suppresses EIF2AK3 activation under basal conditions.