DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian development. Human proteins MECP2, MBD1, MBD2, MBD3, and MBD4 comprise a family of nuclear proteins related by the presence in each of a methyl-CpG binding domain (MBD). Each of these proteins, with the exception of MBD3, is capable of binding specifically to methylated DNA. MECP2, MBD1 and MBD2 can also repress transcription from methylated gene promoters. In contrast to other MBD family members, MECP2 is X-linked and subject to X inactivation. MECP2 is dispensible in stem cells, but is essential for embryonic development. MECP2 gene mutations are the cause of most cases of Rett syndrome, a progressive neurologic developmental disorder and one of the most common causes of mental retardation in females. Alteative splicing results in multiple transcript variants encoding different isoforms.
Categories
Primary Antibodies
Clonality
polyclonal
Description
Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC).
Host
Rabbit
Immunogen
methyl CpG binding protein 2 (Rett syndrome)
Isotype
IgG
Molecular Weight
83 kDa
Reactivity
Human, Mouse
Regulatory
RUO
Synonyms
AUTSX3
Uniprot
P51608
Gene Id
4204
Research Area
Epigenetics, Metabolism
Form
liquid
Format
liquid
Purification
Immunogen affinity purified
Purity
>=95% as determined by SDS-PAGE
Storage
PBS with 0.02% sodium azide and 50% glycerol pH 7.3, -20°C for 12 months (Avoid repeated freeze / thaw cycles.)