Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Tennagels N, et al. (2001) Biochem Biophys Res Commun 282, 387-93 Tennagels N, Bergschneider E, Al-Hasani H, Klein HW (2000) FEBS Lett 479, 67-71 Noelle V, Tennagels N, Klein HW (2000) Biochemistry 39, 7170-7
Host
Rabbit
Immunogen
Peptide sequence around phosphorylation site of tyrosine 1355 (R-S-Y(p)-E-E) derived from Human IR.
Involvement In Disease
Rabson-Mendenhall syndrome (RMS); Leprechaunism (LEPRCH); Diabetes mellitus, non-insulin-dependent (NIDDM); Familial hyperinsulinemic hypoglycemia 5 (HHF5); Insulin-resistant diabetes mellitus with acanthosis nigricans type A (IRAN type A)
Raised In
Rabbit
Reactivity
Human
Regulatory
RUO
Relevance
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2.
Tennagels N, et al. (2001) Biochem Biophys Res Commun 282, 387-93 Tennagels N, Bergschneider E, Al-Hasani H, Klein HW (2000) FEBS Lett 479, 67-71 Noelle V, Tennagels N, Klein HW (2000) Biochemistry 39, 7170-7
Species
Homo Sapiens (Human)
Specificity
The antibody detects endogenous level of IR only when phosphorylated at tyrosine 1355.
Subcellular Location
Cell membrane, Single-pass type I membrane protein
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways
Protein kinase superfamily, Tyr protein kinase family, Insulin receptor subfamily
Tissue Specificity
Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vasc
Buffer
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Form
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Format
liquid
Purification
Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho specific antibodies were removed by chromatogramphy usi
Purity
Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Storage
Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.