ATP synthase D chain; mitochondrial; ATP synthase; H+ transporting; mitochondrial F0 complex
Categories
Primary Antibodies
Clonality
polyclonal
Description
Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F0 domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha3beta3 subcomplex and subunit a/ATP6 static relative to the rotary elements.Lee H.C., Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.Zhang Q.-H., Genome Res. 10:1546-1560(2000).Mao Y.M., Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
Host
Rabbit
Immunogen
Synthesized peptide derived from internal of HumanATP5H.
Raised In
Rabbit
Reactivity
Human, Mouse, Rat
Regulatory
RUO
Relevance
Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F0 domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha3beta3 subcomplex and subunit a/ATP6 static relative to the rotary elements.
Lee H.C., Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases. Zhang Q.-H., Genome Res. 10:1546-1560(2000). Mao Y.M., Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
Species
Homo Sapiens (Human)
Specificity
The antibody detects endogenous levels of total ATP5H protein.
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements.
Pathway
Oxidative Phosphorylation
Protein Families
ATPase d subunit family
Weight
15,773 Da
Buffer
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Form
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Format
liquid
Purification
The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen.
Purity
The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen.
Storage
Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.