Familial incontinentia pigmenti (IP) is a genodermatosis that segregates as an X-linked dominant disorder and is usually lethal prenatally in males. In affected females it causes highly variable abnormalities of the skin, hair, nails, teeth, eyes, and central nervous system. The prominent skin signs occur in 4 classic cutaneous stages: perinatal inflammatory vesicles, verrucous patches, a distinctive pattern of hyperpigmentation, and dermal scarring. Cells expressing the mutated X chromosome are eliminated selectively around the time of birth, so females with IP exhibit extremely skewed X-inactivation. Li Y., Proc. Natl. Acad. Sci. U.S.A. 96:1042-1047(1999).Jin D.-Y., J. Biomed. Sci. 6:115-120(1999).Rothwarf D.M., Nature 395:297-300(1998).
Host
Rabbit
Immunogen
Peptide sequence around phosphorylation site of Serine 376(Y-L-S(p)-S-P) derived from Human IKK-γ.
Involvement In Disease
Ectodermal dysplasia, anhidrotic, with immunodeficiency X-linked (EDAID); Ectodermal dysplasia, anhidrotic, with immunodeficiency, osteopetrosis and lymphedema (OLEDAID); Immunodeficiency, NEMO-related, without anhidrotic ectodermal dysplasia (NEMOID); Immunodeficiency 33 (IMD33); Recurrent isolated invasive pneumococcal disease 2 (IPD2); Incontinentia pigmenti (IP)
Raised In
Rabbit
Reactivity
Human
Regulatory
RUO
Relevance
Familial incontinentia pigmenti (IP) is a genodermatosis that segregates as an X-linked dominant disorder and is usually lethal prenatally in males. In affected females it causes highly variable abnormalities of the skin, hair, nails, teeth, eyes, and central nervous system. The prominent skin signs occur in 4 classic cutaneous stages: perinatal inflammatory vesicles, verrucous patches, a distinctive pattern of hyperpigmentation, and dermal scarring. Cells expressing the mutated X chromosome are eliminated selectively around the time of birth, so females with IP exhibit extremely skewed X-inactivation. Li Y., Proc. Natl. Acad. Sci. U.S.A. 96:1042-1047(1999).Jin D.-Y., J. Biomed. Sci. 6:115-120(1999).Rothwarf D.M., Nature 395:297-300(1998).
Species
Homo Sapiens (Human)
Specificity
The antibody detects endogenous levels of IKK-γ only when phosphorylated at serine 376.
Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. Its binding to scaffolding polyubiquitin seems to play a role in IKK activation by multiple signaling receptor pathways. However, the specific type of polyubiquitin recognized upon cell stimulation (either 'Lys-63'-linked or linear polyubiquitin) and its functional importance is reported conflictingly. Also considered to be a mediator for TAX activation of NF-kappa-B. Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity. Essential for viral activation of IRF3. Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination.
Heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas.
Buffer
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Form
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Format
liquid
Purification
Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho specific antibodies were removed by chromatogramphy usi
Purity
Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates. Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Storage
Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.