Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Highly selective enzyme cleaving HSPGs at specific intrachain sites. Essentially inactive at neutral pH but becomes active under acidic conditions such as during tumor invasion and in inflammatory processes. Facilitates cell migration associated with metastasis, wound healing and inflammation. Enhances shedding of syndecans. Acts as procoagulant by enhancing the generation of activated factor X/F10 in the presence of tissue factor/TF and activated factor VII/F7. Independent of its enzymatic activity, increases cell adhesion to the extracellular matrix (ECM). Enhances AKT1/PKB phosphorylation, possibly via interaction with a lipid raft-resident receptor. Plays a role in the regulation of osteogenesis. Enhances angiogenesis through up-regulation of SRC-mediated activation of VEGF. Implicated in hair follicle inner root sheath differentiation and hair homeostasis.
Specificity
Natural and recombinant Bovine Heparanase
Subcellular Location
Lysosome membrane Peripheral membrane protein Secreted Nucleus Proheparanase is secreted via vesicles of the Golgi. Interacts with cell membrane heparan sulfate proteoglycans (HSPGs). Endocytosed and accumulates in endosomes. Transferred to lysosomes where it is proteolytically cleaved to produce the active enzyme. Under certain stimuli, transferred to the cell surface. Associates with lipid rafts. Colocalizes with SDC1 in endosomal/lysosomal vesicles. Accumulates in perinuclear lysosomal vesicles. Heparin retains proheparanase in the extracellular medium.
Heterodimer; heterodimer formation between the 8 kDa and the 50 kDa subunits is required for enzyme activity (By similarity). Interacts with TF; the interaction, inhibited by heparin, enhances the generation of activated factor X and activates coagulation. Interacts with HRG; the interaction is enhanced at acidic pH, partially inhibits binding of HPSE to cell surface receptors and modulates its enzymatic activity. Interacts with SDC1; the interaction enhances the shedding of SDC1.